3,438 research outputs found

    A random wave model for the Aharonov-Bohm effect

    Get PDF
    We study an ensemble of random waves subject to the Aharonov-Bohm effect. The introduction of a point with a magnetic flux of arbitrary strength into a random wave ensemble gives a family of wavefunctions whose distribution of vortices (complex zeros) are responsible for the topological phase associated with the Aharonov-Bohm effect. Analytical expressions are found for the vortex number and topological charge densities as functions of distance from the flux point. Comparison is made with the distribution of vortices in the isotropic random wave model. The results indicate that as the flux approaches half-integer values, a vortex with the same sign as the fractional part of the flux is attracted to the flux point, merging with it at half-integer flux. Other features of the Aharonov-Bohm vortex distribution are also explored.Comment: 16 pages, 5 figure

    FORMING FINE PARTICLES

    Get PDF
    To alter feedstock material, the material is exposed to laser radiation applied at a selected angle of incidence, intensity and wavelength related to the refractive index of the feedstock material. Fine uniform particles may be formed through vapor explosion and/or plasma formation and used by this method to coat surfaces, such as with paint or adhesive or to suply uniform small particles to a heat engine. Moreover, moving materials such as a column of liquid may be subjected to high internal pressure and temperature for creating physical and chemical changes

    REMOTE CHEMICAL AND ELEMENTAL ANALYSS BY ULTRA FAST SPECTROSCOPY

    Get PDF
    Systems and methods are provided for monitoring materials using ultra fast laser pulses. Ultra fast laser pulses, such as femtosecond or attosecond laser pulses, are applied to the materials and laser pulses that result from interactions between the ultra fast laser pulses and the materials are collected. Spectral content of the resulting pulses is generated and presented. The elemental composition of the materials is determined using the spectral content

    APPARATUS AND METHOD FOR DETECTION AND CONCENTRATION MEASUREMENT OF TRACE METALS USING LASER INDUCED BREAKDOWN SPECTROSCOPY

    Get PDF
    A method and apparatus for in situ detection and concentration measurement of trace elements in an analysis Sample is disclosed. The invention uses laser induced breakdown spectroscopy (LIBS) wherein femtosecond pulsed laser energy is employed to produce the plasma. The femtosecond pulsed laser energy is focused on the analysis Sample to produce the plasma and the resulting emission is delivered for spectral analysis. Because the method and apparatus of the present invention allow breakdown of the analysis Sample without propagation of energy to the Sample-air interface, a plasma is produced that consists essentially of Sample materials without being contaminated by air plasma formation. Thus, the background emission is reduced and there is no need to wait for the plasma to cool down over time before detecting the spectral lines of the Sample. Because there is no need to wait for cooling before spectral measurement, lower detection limits are possible. Furthermore, concentration measurement accuracy is improved using intensity rationing techniques Since a calibration curve produced using the method and apparatus of the present invention is Substantially more linear than those using the conventional nanosecond pulsed LIBS

    Femtosecond Laser Utilization Methods and Apparatus and Method for Producing Nanoparticles

    Get PDF
    The present invention teaches various femtosecond machining and drilling apparatus and processes for fabricating tools and the like from both traditional and non-traditional materials. Also described are novel tools such as scalpels, and nozzles fabricated from the apparatus and processes of the present invention. Likewise, the present invention may be utilized in both a novel propulsion system and the production of materials formed from nanometer sized particles and the like

    APPARATUS FOR FORMING FINE PARTICLES

    Get PDF
    To alter feedstock material, the material is exposed to laser radiation applied at a selected angle of incidence, intensity and wavelength related to the refractive index of the feedstock material. Fine uniform particles may be formed through vapor explosion and/or plasma formation and used by this method to coat surfaces, such as with paint or adhesive or to supply uniform small particles to a heat engine. Moreover, moving materials such as a column of liquid may be subjected to high internal pressure and temperature for creating physical and chemical changes

    Comparison of UNL laser imaging and sizing system and a phase/Doppler system for analyzing sprays from a NASA nozzle

    Get PDF
    Aerosol spray characterization was done using a P/DPA and a laser imaging/video processing system on a NASA MOD-1 air-assist nozzle being evaluated for use in aircraft icing research. Benchmark tests were performed on monodispersed particles and on the NASA MOD-1 nozzle under identical laboratory operating conditions. The laser imaging/video processing system and the P/DPA showed agreement on calibration tests in monodispersed aerosol sprays of + or - 2.6 microns with a standard deviation of + or - 2.6 microns. Tests were performed on the NASA MOD-1 nozzle on the centerline and radially at one-half inch increments to the outer edge of the spray plume at a distance two feet (0.61 m) downstream from the exit of the nozzle. Comparative results at two operating conditions of the nozzle are presented for the two instruments. For the first case, the deviation in arithmetic mean diameters determined by the two instruments was in a range of 0.1 to 2.8 microns, and the deviation in Sauter mean diameters varied from 0 to 2.2 microns. Operating conditions in the second case were more severe which resulted in the arithmetic mean diameter deviating from 1.4 to 7.1 microns and the deviation in the Sauter mean diameters ranging from 0.4 to 6.7 microns

    Comparison of UNL laser imaging and sizing system and a phase Doppler system for analyzing sprays from a NASA nozzle

    Get PDF
    Research was conducted on characteristics of aerosol sprays using a P/DPA and a laser imaging/video processing system on a NASA MOD-1 air assist nozzle being evaluated for use in aircraft icing research. Benchmark tests were performed on monodispersed particles and on the NASA MOD-1 nozzle under identical lab operating conditions. The laser imaging/video processing system and the P/DPA showed agreement on a calibration tests in monodispersed aerosol sprays of + or - 2.6 micron with a standard deviation of + or - 2.6 micron. Benchmark tests were performed on the NASA MOD-1 nozzle on the centerline and radially at 0.5 inch increments to the outer edge of the spray plume at a distance 2 ft downstream from the exit nozzle. Comparative results at two operation conditions of the nozzle are presented for the two instruments. For the 1st case studied, the deviation in arithmetic mean diameters determined by the two instruments was in a range of 0.1 to 2.8 micron, and the deviation in Sauter mean diameters varied from 0 to 2.2 micron. Severe operating conditions in the 2nd case resulted in the arithmetic mean diameter deviating from 1.4 to 7.1 micron and the deviation in the Sauter mean diameters ranging from 0.4 to 6.7 micron
    • …
    corecore